Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Environ Sci Process Impacts ; 23(1): 144-159, 2021 Feb 04.
Article in English | MEDLINE | ID: covidwho-1454824

ABSTRACT

The COVID-19 pandemic forced a nationwide lockdown in India for months when close to 1.3 billion people were confined to their homes. An abrupt halt in the majority of the urban activities reduced the generation of anthropogenic heat which often exacerbates the Urban Heat Island (UHI) effect in the urban pockets of the country. We studied the lockdown impact on seven highly populated and polluted mega urban agglomerations across India, namely Delhi, Ahmedabad, Hyderabad, Kolkata, Mumbai, Bengaluru and Chennai, using near-anniversary Landsat 8 data. The results revealed that the lockdowns have improved the air quality and reduced the Land Surface Temperature (LST) and hence the UHI effect over these cities. Each of the cities experienced an improved Air Quality Index (AQI) ranging from 18 to 151 units except Chennai (with a marginal 8 units increase in AQI), a decrease in mean LST in the range of 0.27 °C to 7.06 °C except Kolkata which showed an increment by ∼4 °C, and a reduction in daily averaged air temperature ranging from 0.3 °C to 10.88 °C except Hyderabad which witnessed an increase of 0.09 °C during the lockdown (April 2020) compared to the previous years (April 2019 and 2018). Delhi exhibited the maximum positive impact of the lockdown in all aspects with two-fold improved air quality, and Ahmedabad showed the least improvement. In addition to the variations in regional land use and land cover and proportion of essential industries that remained operational throughout the lockdown, the geographic location, topography, local meteorology and climate were some of the other factors also responsible for either aiding or overcompensating the large scale LST variabilities observed in these cities. These results hint at an unprecedented opportunity to evaluate the effectiveness of periodic planned lockdowns as a possible mitigating measure to reduce LST spikes and degraded air quality in urban areas in the future.


Subject(s)
COVID-19 , Hot Temperature , Cities , Communicable Disease Control , Environmental Monitoring , Humans , India , Islands , Pandemics , SARS-CoV-2 , Temperature
2.
Remote Sensing ; 12(16):2584-2584, 2020.
Article | WHO COVID | ID: covidwho-706332

ABSTRACT

The SARS-CoV-2 (or COVID-19) lockdown in India, which started at an early stage of its infection curve, has been one of the strictest in the world. Air quality has improved in all urban centers in India, a major emitter of greenhouse gases (GHG). This study is based on the hypothesis that an abrupt halt in all urban activities resulted in a massive decline in NO2 emissions and has also altered coastal nitrogen (N) inputs;in-turn, this affected the trophic status of coastal waters across the country. We present the first evidence of an overall decline in pre-monsoon chlorophyll-a, a proxy for phytoplankton biomass, in coastal waters off urban centers during the peak of the lockdown in April. The preliminary field data and indirect evidence suggests the reduction in coastal chlorophyll-a could be linked to a net decline in nutrient loading, particularly of bioavailable N through watershed fluxes and atmospheric deposition. The preliminary results stress the importance of a further understanding of the relationship between fluctuations in anthropogenic N, due to lockdown measures and coastal ecosystem responses, as countries open-up to a business-as-usual scenario.

SELECTION OF CITATIONS
SEARCH DETAIL